

TOOLS FOR IDENTIFICATION: FORENSIC RADIOLOGY AND NEW DEVELOPMENTS IN DNA SAMPLE TYPES FOR DECOMPOSED AND BURNT HUMAN REMAINS

Prof. Noel Woodford / Director

ICRC Workshop: Management and Identification of Decedent Migrants

No Conflicts of Interest to declare

The following presentation contains images of deceased persons

TO BE DISCUSSED

Identification Phases

- 1. Scene
- 2. Mortuary/laboratory
 - Radiology/Molecular
- 3. Ante-mortem
 - Information/reference sample
- 4. Reconciliationcontemporaneous or deferred
- 5. Debriefing

TYPES OF REMAINS

Preserved-intact

Decomposed

Fire-affected

Fragmented

VICTORIA 2009 AND PNG 2011 LESSONS LEARNED AND APPLIED

IDENTIFICATION

Primary

- Dental
- DNA
- Fingerprints

Medical implants

IDENTIFICATION METHODS

Secondary/supportive

- Visual
- Clothing
- Documents
- Jewellery
- Circumstances
- Scars, tattoos, deformities
- Others- modelling, superimposition

RADIOLOGY MODALITIES

- Plain X-ray
- Image intensifier
- CT
- (MRI)

CT ADVANTAGES

- Digital permanent record
- Remains in body bag
 - minimise hazard risk
 - minimise evidence loss
- Data for deferred/remote pathological, odontological, anthropological examination
 - Reconciliation/re-allocation

CT- ANALYSIS

Scan once, post-process many times

- 1° survey- initial radiological CT report
- 2° survey- specific dental, anthropological assessment
- 3° survey- retrospective radiological review

CT REPORTING

Sex

Age Natural Disease

Specific identifiers

- Dentition
- Surgical implants
- ISFRI-DVI*

		VIEW CI	DVI screening	protorma	
VFM#:			DVI #:		
Dofe:					
C1 Technical issu	••				
State of body (ci	rcle appropriate):	Infact	Severely burnt	Remains	Individual parts
Details					
Type of remains ((circle appropriate)	: Human	Non-human	Co-mingled	not able to be determined
Details					
Gender (circle a	ppropriate):	м	,	not oble t	o be determined
Bosed on					
Growths plates (circle appropriate):	¥	N	not oble t	o be determined
Location					-
Disease (circle a	ppropriate):				
Coronary artery	calcification	¥	N	not oble t	o be determined
Systemic vascula	r calcification	¥	N	not oble t	o be determined
(if so wi	here)				-
Osteoorthvillis		¥	N	not oble t	o be determined
(if so with	here)				
09 w					_
Identification:					
Teeth (detaik) _					_
Medical devices	(details)				_
01er					
Summary (circle)):				
Gender	Male	Ferr	ale	not able to be det	berimed
Estimated age:	<12 monits	1-8y 5-1	3y 13-20y	20-40y 40-80y	>80y don'i know
in factories:	Teach.	Made and day is			

Sex (non-anthropological)

VICTORIAN INSTITUTE OF FORENSIC MEDICINE

AGE ESTIMATION MULTI-MODALITY

VICTORIAN INSTITUTE OF FORENSIC MEDICINE

Disease/deformity

Medical devices

Dental- Plain Xray

RADIOLOGY

Dental-CT

PROBLEMS

- Artefacts
- Positioning- non orthogonal
- Small fragments/building materials
- Expensive*
- Limited portability/availability
- Radiological/radiographic expertise
- Servicing
- Data Storage- PACS

CT RADIOLOGY SUMMARY

Rapid processing of remains

Permanent record

Supplements physical examination

Minimise tissue loss/hazards

Aid in primary and secondary identification

Can be resource intensivemoney, personnel

MOLECULAR BIOLOGY

NEW APPROACHES

MOLECULAR BIOLOGY APPLICATIONS

Routine identification:

- Nuclear DNA (nDNA) 16 autosomal markers including sex determination
- Mitochondrial DNA (mtDNA)

Disaster Victim Identification (DVI):

• Multiple fatalities- few to hundreds

Missing persons investigations:

• Unidentified remains reconciled with missing persons

DNA testing in old specimens:

• mtDNA analysis

NUCLEAR DNA (nDNA)

- □ Nucleus (one per cell)
- □ One copy of nDNA per cell
- □ Large
- Packaged into structures
 - Chromosomes
 - 23 pairs of chromosomes in a human cell
 - Including the sex-determining X and Y chromosomes

□ Mode of inheritance

- ¹/₂ from mother
- 1/2 from father

629-628 829-038	2000 a	8 6 8 8 3			16	S S S S S S S S S S S S S S S S S S S	
80	81043 1001	68	9 9 47 8	84	28	88	
10 13	10	8 6 A 15	9	10	5 0 17	12	
2.2	88		4.	44		0.0	8
19	20		21	22		x	У

MITOCHONDRIAL DNA (mtDNA)

- Small
- Circular genome
- Mitochondria (many per cell)
- Several copies mtDNA per mitochondria
- 100s copies per cell
- Relatively stable compartmentalisation
- More mtDNA compared to nDNA
- mtDNA is exclusively inherited from the mother

chromatin

nuclear pore nuclear envelope

Golgi complex

ndoplasmic

ree ribosome

centriole

reticulum

DNA IDENTIFICATION

Kinship:

- nDNA analysis
- Compare profiles to establish if individuals are related
 - -Parent/child relationships
 - -Sibship (same parents)

Direct comparison with ante-mortem data:

Self to self (e.g. deceased compared to Guthrie cards, histology blocks, hair etc.)

Challenges:

- Incinerated remains
- Decomposed remains

INCINERATED REMAINS

Range of body types

 Intact charred remains to fragmented burnt and calcined bones

Varied success of DNA analysis- 2009 experience

- Good for bone/ muscle/ blood from charred remains
- Poor from fragmented burnt bones

DNA TRIAGE PROCESS- 2009 FIRES

Post-mortem sample collection	
Condition of body	Sample to be collected
Not decomposed, whole body	Blood (on FTA card or swab) and buccal (mouth) swabs
Not decomposed, fragmented	If available, blood And Deep red muscle tissue (~1.0 g)
Decomposed, whole bodies and fragmented remains	Long compact bone samples (cut 4–6 cm, using window cut without separating the shaft) And/or Healthy teeth without fillings (molars preferable) And/or Any available bone (~10 g, if possible; dense cortical bone preferable)
Severely burnt bodies	Any of the samples above Or Swab from inside the urinary bladder (see Ref. [32])

Reference: Prinz, M. et al (2007) FSI Genetics (1) 3-12 FSI Genetics (1) 3-12

VICTORIAN INSTITUTE OF FORENSIC MEDICINE

2011 PNG FLIGHT 1600: 28 DECEASED

- Variation in preservation- many victims severely burnt
- Bladder preserved intact
- Bladder swabs collected for DNA analysis in addition to routine specimens- AFP
- Full DNA profiles obtained from all samples
- ? Applicability to routine case work- research

BLADDER SWABS: SAMPLE COLLECTION PROTOCOL

Standard sample

• Dependent on the degree of incineration- bone, blood, muscle

Bladder swab sample

- Small incision (~1 cm) in the anterior wall of the bladder
- Dry cotton swab inserted
- Bladder wall wiped
- If delay (>12 hrs) aeration required

RESEARCH- BLADDER SWABS 2013

- All fire deaths admitted to SCO- January- November 2012
- House fires; car accidents; aviation; self immolation; homicide.
- 28 cases- wide variability in preservation
- Routine specimens for comparison- blood, muscle, bone depending on case

BLADDER SWAB RESULTS

- nDNA extracted regardless of condition of swab (yellow to red)
- Extraction techniques- almost identical to buccal swabs. Easy and robust
- 95% of bladder swabs showed greater nDNA yields (compared with blood or muscle)
- 2 cases showed lower nDNA yields (compared with bone)- still adequate for ID
- Overall 1-10x more DNA from bladder swab samples

BLADDER SWAB STUDY- CONCLUSIONS

- Bladder swabs are a reliable source of DNA for STR analysis
- Ideal for IDs involving incinerated cases
- Minimally invasive techniques
- Simple extraction, good DNA yield
- Reduce the time and complexity in identification.

Sample type	Sample preparation (hours)	Results available (days)
Bone	6-12	2
Muscle tissue	2-6	1-2
blood	1	1
Bladder swab	1	1

DECOMPOSED CASES- TOENAIL DNA RESEARCH- 2016

- Typical sample- compact bone or head of femur
- Previous focus on nail scrapings in criminal investigations- few ID studies
- Nails similar to bone- hard material resistant to environmental damage and decomposition
- ?Toenails- lower numbers of mixed profiles
- Easily accessible- minimal training required
- Decreased processing time

Study to develop and validate technique for nail analysis

TOENAIL DNA RESEARCH

30 decomposed cases 2013-14

- Average PM interval 3 weeks (2 days to 9 months)
- unsuitable for visual ID
- toenail + conventional sample (bone)

Extraction methods optimised (e.g. washing and digestion times) by parallel live donor study (buccal swab and toenail clippings- 46 cases)

- Adaption of hair extraction technique
- 2 methods validated silica based column purification (Qiagen) and organic (lab)
- > 0.01g nail material required for full profile

RESULTS

Volunteer specimens

- Both methods yielded sufficient DNA for ID purposes
- Optimized Qiagen method better for more complete profile

Decomposed cases

- Required additional decontamination step (scraping)
- Overall, toenails comparatively more degraded than bone
- nDNA extracted from all 30 toenail cases
- 2/30 bone samples failed to produce adequate nDNA
- 38% of toenail cases produced higher yield than bone in the same case

CONCLUSION- BENEFITS OF USE OF TOENAIL MATERIAL

- Significant reduction in sample preparation time 2 hours as compared with 6-12 hours for bone and 2 – 6 hours for muscle
- Reduced occupational health and safety risks for staff
- Less invasive/technically demanding + faster sample collection (15' v 2')
- Faster overall processing time
- Easier to store (smaller samples, no refrigeration)

PUBLICATIONS

WHERE TO FROM HERE?

□ Massive parallel sequencing (MPS)

- Determine the DNA sequence of many (1000s) DNA fragments at once

□ DNA sequences that predict physical appearance

- Phenotypic features
 - Eye colour; hair colour; baldness; skin tone
- Geographical ancestry

VICTORIAN INSTITUTE

OF FORENSIC MEDICINE

• E.g. European, Asian, or African

100%

Eye Color

VIFM MOLECULAR BIOLOGY LABORATORY STAFF

ISFRI International Society of Forensic Radiology and Imaging

www.isfri2018.com

QUESTIONS?

ICRC Workshop: Management and Identification of Decedent Migrants

